[1]陶苞朵,张等文.遏制大数据“杀熟”:政府主导的协同治理模式[J].常州大学学报(社会科学版),2022,23(05):13-22.
 Tao Baoduo,Zhang Dengwen.Curb Swindling Money out of Old Customers by Big Data: A Collaborative Governance Model Led bythe Government[J].Journal of Changzhou University(Social Science Edition),2022,23(05):13-22.
点击复制

遏制大数据“杀熟”:政府主导的协同治理模式()
分享到:

常州大学学报(社会科学版)[ISSN:2095-042X/CN:32-1821/C]

卷:
第23卷
期数:
2022年05期
页码:
13-22
栏目:
政治·法学研究
出版日期:
2022-09-28

文章信息/Info

Title:
Curb Swindling Money out of Old Customers by Big Data: A Collaborative Governance Model Led bythe Government
文章编号:
10.3969/j.issn.2095-042X.2022.05.003
作者:
陶苞朵张等文
Author(s):
Tao BaoduoZhang Dengwen
关键词:
大数据“杀熟” 协同治理 价格歧视 价格欺诈 个性化定价
Keywords:
swindling money out of old customers by big data collaborative governance price discrimination price fraud personalized pricing
分类号:
D63; D922.294; F724.6
文献标志码:
A
摘要:
大数据“杀熟”是数字经济时代的独特产物,其产生的消极影响引发了社会公众的担忧与批判。理性看待大数据“杀熟”,辨析其与价格欺诈、个性化定价、价格歧视等相关概念的关系,廓清不同概念之间的交织边界,是辩证认识和深入理解大数据“杀熟”并提出有效治理方案的前提条件。传统“二元分散治理”模式无法应对大数据“杀熟”的复杂问题,构建“政府主导、多元参与”的协同治理新格局是一种回应现实需求的有益探索,主要通过发挥政府的核心优势,建立多元主体间的协作与互动,完善协同治理的顶层设计与权责分工,利用文化渲染和激励手段增加协同治理参量,以此达成政府与平台商户、消费者协同遏制大数据“杀熟”的治理目标。
Abstract:
Swindling money out of old customers by big data is a unique product of the digital economy era.The negative effects it produces have aroused the concern and criticism of the public. A rational view ofswindling money out of old customers by big data, identifying its relationship with price fraud, personalizedpricing, price discrimination and other related concepts, and clarifying the intertwined boundaries betweendifferent concepts are the preconditions for a dialectical and in-depth understanding as well as effectivemeasures for this phenomenon. The traditional “dual decentralized governance” model cannot deal with thecomplex problem of swindling money out of old customers by big data. Building a new pattern of collaborativegovernance with “government leading and multiple participation” is a beneficial exploration to respond to theactual needs, mainly by giving full play to the core advantages of the government, establishing cooperation andinteraction among multiple subjects, improving the top-level design and division of rights and responsibilitiesof collaborative governance, using cultural impact and incentives to increase collaborative governanceparameters, so as to achieve the governance goal of curbing swindling money out of old customers by big datawith the joint efforts of the government, platform merchants and consumers.

参考文献/References:

[1]尼葛洛庞帝.数字化生存[M].胡泳,范海燕,译.海口:海南出版社,1997:267.
[2]刘鹏飞,曲晓程.大数据“杀熟”:高技术诡异的微笑[J].中国报业,2018(7):58-59.
[3]邹开亮,彭榕杰.大数据“杀熟”的法律定性及其规制:基于“算法”规制与消费者权益保护的二维视角[J].金融经济,2020(7):51-57.
[4]李飞翔.“大数据杀熟”背后的伦理审思、治理与启示[J].东北大学学报(社会科学版),2020,22(1):7-15.
[5]发展负责任的人工智能:新一代人工智能治理原则发布[EB/OL].(2019-06-17)[2021-10-04].http://www.most.gov.cn/kjbgz/201906/t20190617_147107.html.
[6]邹开亮,刘佳明.大数据“杀熟”的法律规制困境与出路:仅从《消费者权益保护法》的角度考量[J].价格理论与实践,2018(8):47-50.
[7]张飒.“大数据杀熟”违法吗?[N].北京日报,2018-04-18(14).
[8]梁正,曾雄.“大数据杀熟”的政策应对:行为定性、监管困境与治理出路[J].科技与法律,2021(2):8-14.
[9]刘佳明.大数据“杀熟”的定性及其法律规制[J].湖南农业大学学报(社会科学版),2020,21(1):56-61.
[10]周围.人工智能时代个性化定价算法的反垄断法规制[J].武汉大学学报(哲学社会科学版),2021,74(1):108-120.
[11]喻玲.算法消费者价格歧视反垄断法属性的误读及辨明[J].法学,2020(9):83-99.
[12]陈晓华,吴家富.人工智能重塑世界[M].北京:人民邮电出版社,2019:30.
[13] GANDOMI A, HAIDER M. Beyond the hype: big data concepts, methods, and analytics[J]. International journal of information management,2015,35(2):137-144.
[14] Personalized pricing in the digital era [EB/OL].(2018-11-28)[2021-10-04].https://www.oecd.org/fr/daf/concurrence/personalised-pricing-in-the-digital-era.htm.
[15]承上.人工智能时代个性化定价行为的反垄断规制:从大数据杀熟展开[J].中国流通经济, 2020, 34(5):121-128.
[16] 阿瑟·塞西尔·庇古.福利经济学:上[M].朱泱,张胜纪,吴良健,译.北京:商务印书馆,2006:290.
[17]李丹.算法歧视消费者:行为机制、损益界定与协同规制[J].上海财经大学学报,2021,23(2):17-33.
[18]张贤明,田玉麒.论协同治理的内涵、价值及发展趋向[J].湖北社会科学,2016(1):30-37.
[19] FREEMAN J. Collaborative governance in the administrative state[J]. UCLA law review,1997(1):1-12.
[20]梁宇,郑易平.我国政府数据协同治理的困境及应对研究[J].情报杂志,2021,40(9):108-114.
[21]审时度势精心谋划超前布局力争主动 实施国家大数据战略加快建设数字中国[N].人民日报,2017-12-10(1).
[22]陈多闻.技术使用的哲学探究[M].沈阳:东北大学出版社,2011:74.
[23]陈春花,朱丽,刘超,等.文化协同的三重影响路径探索[J].管理学报,2020,17(4):475-486.
[24]王映雪.走出治理之协同困境的信任逻辑理论探析[J].山东社会科学,2015(10):178-183.

相似文献/References:

[1]王嘉诚.元宇宙赋能文化消费:消费特征、风险与治理路径[J].常州大学学报(社会科学版),2023,24(06):105.[doi:10.3969/j.issn.2095-042X.2023.06.012]
 Wang Jiacheng.Metaverse Energizing Cultural Consumption: Consumption Characteristics, Risks and Governance Path[J].Journal of Changzhou University(Social Science Edition),2023,24(05):105.[doi:10.3969/j.issn.2095-042X.2023.06.012]

备注/Memo

备注/Memo:
作者简介:陶苞朵,东北师范大学政法学院博士研究生; 张等文,法学博士,东北师范大学政法学院教授、博士研究生导师。
基金项目:国家社会科学基金一般项目“基层协商民主制度优势转化为治理效能的内在机理与长效机制研究”(21BZZ032)。
更新日期/Last Update: 1900-01-01